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Numerical study of secondary flows and roll-cell 
instabilities in rotating channel flow 

By CHARLES G. SPEZIALE AND SIVAGNANAM THANGAM 
Stevens Institute of Technology, Hoboken, NJ 07030 

(Received 16 September 1982 and in revised form 7 January 1983) 

A numerical study is conducted on the pressure-driven laminar flow of an incom- 
pressible viscous fluid through a rectangular channel subjected to a spanwise rotation. 
The full nonlinear time-dependent Navier-Stokes equations are solved by a finite- 
difference technique for various rotation rates and Reynolds numbers in the laminar 
regime. At weak rotation rates, a double-vortex secondary flow appears in the 
transverse planes of the channel. For more rapid rotation rates, an instability occurs 
in the form of longitudinal roll cells in the interior of the channel. Further increases 
in the rotation rate leads to  a restabilization of the flow to a Taylor-Proudman regime. 
It is found that the roll-cell and Taylor-Proudman regimes lead to a substantial 
distortion of the axial-velocity profiles. The specific numerical results obtained are 
shown to be in excellent agreement with previously obtained experimental measure- 
ments and theoretical predictions. 

1. Introduction 
During the past decade, a considerable amount of research has been conducted on 

laminar secondary flows and roll-cell instabilities in pressure-driven channel flow 
subjected to a spanwise rotation. Hart (1971) was the first to  conduct detailed 
measurements of such a flow for a variety of rotation rates. These measurements were 
carried out with water (to allow for dye visualization) in a rectangular channel with 
an aspect ratio HID x 7 for weak to relatively rapid rotation rates (see figure 1 ) .  The 
results of these experiments clearly demonstrated the existence of three regimes in 
rotating channel flow. At weak rotation rates there is a double-vortex secondary flow ; 
a t  intermediate rotation rates there is an instability in the form of longitudinal roll 
cells; and at more rapid rotation rates there is a restabilization of the flow to a 
Taylor-Proudman regime where the axial velocity profiles do not vary along the 
direction of the axis of rotation in the interior of the channel. Hart also carried out 
a theoretical analysis of the secondary flow structure for the weak-rotation case and 
a linear stability analysis for the onset of roll cells in rotating plane Poiseuille flow 
(i.e. the limiting case of a rectangular channel with an infinite aspect ratio as shown 
in figure 2). The results of these analyses were in general agreement with the 
experimental data that was obtained. Furthermore, Hart  demonstrated that the 
general stability problem for rotating Poiseuille flow is exactly analogous (i.e. valid 
for the general time-dependent nonlinear case) to the stability problem of a 
temperature-stratified fluid with the appropriate stratification. 

Lezius & Johnston (1976) conducted a more detailed theoretical analysis of laminar 
roll-cell instabilities in rotating channel flow. Their investigations included a linear 
stability analysis for the onset of laminar roll cells in rotating plane Poiseuille flow. 
This was accomplished by a finite-difference method (see Lezius 1975), as opposed 
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FIGURE 1 .  Secondary flow in a rectangular channel subjected to a weak spanwise rotation (after Hart 
1971). 

FIGURE 2. Roll-cell instabilities in plane Poiseuille flow subjected to a spanwise rotation (after Lezius 
&Johnston 1976). 

to the Galerkin method which was used by Hart. The specific results obtained 
indicated that the critical disturbance occurs a t  a Reynolds number Re = 88.53 and 
a rotation number Ro = 0.5. However, for higher Reynolds numbers, they found that 
unstable conditions can exist for 0 < Ro < 3. I n  general, these results predicted flow 
instability at somewhat lower Reynolds numbers for a given rotation rate than the 
results of Hart. Lezius & Johnston also conducted a linear stability analysis for the 
onset of roll-cell instabilities in turbulent plane Poiseuille flow subjected to  a spanwise 
rotation. Despite the fact that  the analysis was linear and involved turbulence 
modelling, the results obtained were nevertheless in excellent agreement with 
experiments (see Johnston, Halleen & Lezius 1972). 

In  the present paper we will present a detailed numerical study of rotating laminar 
channel flow in order to gain a more complete understanding of the various flow 
regimes that occur. The full nonlinear Navier-Stokes equations will be solved by a 
finite-difference method that was used in Speziale (1982) to analyse flow in a 
low-aspect-ratio rotating rectangular duct. Particular emphasis will be placed on the 
examination of roll-cell instabilities and the restabilization of the flow to a Taylor- 
Proudman regime in a rotating rectangular channel with an aspect ratio HID = 8. 
Although there has been a considerable amount of research on roll-cell instabilities 
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as discussed above, none of this work consisted of a solution of the full nonlinear 
equations of motion with the inclusion of the end effects of boundaries (i.e. a 
finite-aspect-ratio channel). These considerations are important for a more complete 
understanding of this phenomenon in real physical systems. We will also make a 
detailed study of the secondary-flow structure in the Taylor-Proudman regime. To 
the best of our knowledge, no calculations have been performed to date on this regime 
in a large-aspect-ratio channel. I n  fact, even the experimental observations of this 
regime are somewhat incomplete (e.g. there are no publishedexperimental observations 
of the secondary-flow streamlines in the Taylor-Proudman regime). Furthermore, 
unlike in all of the previous studies, we will calculate the time evolution of rotating 
channel flow to gain further insight into the stabilizing and destabilizing mechanisms 
that occur. Comparisons with existing experimental data and the prospects for future 
research will be discussed in later sections. 

2. Formulation of the physical problem 
The physical problem to be considered is that of the laminar pressure-driven flow 

of an incompressible viscous fluid through a straight rectangular channel subjected 
to a steady spanwise rotation s1 (see figure 1 ) .  The axial pressure gradient aP/az = - Q 
is constant (where P is the modified pressure, which includes the gravitational and 
centrifugal force potentials) and is maintained by external means. Here, the channel 
is sufficiently long so that there exists an interior portion where end effects can be 
suppressed and the flow properties are independent of the axial coordinate z. I n  the 
absence of rotations, the fully developed velocity field u is of the unidirectional form 

u = w(x, y) k ,  (2.1) 

V'W = -G/p ,  (2.2) 

where w is determined from the Poisson equatiun (cf. Batchelor 1967) 

and ,it is the shear viscosity of the fluid. Equation (2.2) is solved subject to the no-slip 
condition that w vanishes on the walls of channel. This yields the classical 
quasiparabolic velocity profile. 

For non-zero rotation rates, the fully developed velocity field is three-dimensional 
relative to an observer who rotates with the channel (cf. Hart  1971), i.e. u is of the 

(2.3) 
form 

where u and v constitute the secondary flow. The velocity vector u is a solution of 
the Navier-Stokes equations and the continuity equation, which, relative to  an 
observer who is rotating with the channel (i.e. at an angular velocity 52 = Qj), take 
the form 

0 = u ( x ,  Y) i+ V ( T ,  y ) j +  w(x, y) k ,  

au au au 1 ap 
- +u- f v -  = - -- +uV%-2Qw, 
at ax ay p a x  

av av av lap 
- +u- +v- = --- + UV'V, 
at ax ay pay  

aw aw aw G 
at +u- +v- = - 

ax a Y  P 
+ uv2w + 2Qu, - 

au av 
ax ay 
- + - = o ,  (2.7) 

13 
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where P is the modified pressure, p is the density of the fluid, v = ,u/p is the kinematic 
viscosity, and V2 is the two-dimensional Laplacian, i.e. 

Of course, in formulating (2.4)-(2.7) we have made use of the fact that the velocity 
field is independent of the axial coordinate z. Furthermore, the transient form of the 
Navier-Stokes equations are given since we intend to study the time evolution of the 
flow. 

As a result of the simplified form of the continuity equation (2.7), there exists a 
stream function + for the secondary flow so that 

where I+? is a solution of the Poisson equation 

V2@ = w .  (2.10) 
In  (2.10) av au 

ax ay 
wz = - - - (2.11) 

is the axial component of the vorticity, which is determined from the z-component 
of the vorticity-transport equation given by 

au aw aw aw 
- +u- +v- = vV2w+2Q-. 
at ax ay aY 

(2.12) 

As a consequence of (2.10) i t  is quite clear that  secondary flows result from a non-zero 
axial vorticity w .  It is, therefore, obvious that the Coriolis term 2Oawlay (which 
serves an as axial-vorticity source term in (2.12)) is the driving mechanism for the 
creation of secondary flows in a rotating rectangular channel. 

A modified vorticity-stream-function approach was chosen for this numerical 
study. More specifically, the following system of equations will be solved numerically : 

aw aw aw G 
- + u - + v - = - + v v  w +2szu, 
at ax ay 
aw am au aw 
-+u-+v-= vV2w+2!2--, 
at ax ay aY 

(2.13a) 

(2.13 b )  

V2@ = w ,  (2 .13~)  

all. 
aY ’ ax v = - .  u = - -  all. (2.13d) 

This coupled system of nonlinear partial differential equations (2.13) must be solved 
subject to the boundary conditions 

u = o ?  v = o ,  w = o ,  l / l=o 
on the walls of the channel. The boundary conditions on the axial vorticity w can 
be derived by a Taylor expansion of (2 .13~)  near the walls of the channel (see Speziale 
1982). The initial-value problem to be considered is that  of the spin-up of an initially 
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fully developed channel flow. Here, the angular velocity SZ is impulsively applied a t  
time t = 0 with 

u = o ,  v = o ,  w=wi, w = o ,  + = o ,  (2.14) 

where wi is the classical quasiparabolic velocity profile obtained from (2.2). This 
constitutes the way the experiments are usually conducted on rotating channel flow 
(cf. Hart 1971). 

The system of equations (2.13a-d) will be solved by an explicit finite-difference 
approach that was discussed in detail and used by Speziale (1982). I n  this approach, 
the convective terms and viscous terms in (2.13a, b) are respectively formulated by 
Arakawa's scheme and the DuFort-Frankel scheme (cf. Roach 1972). The Coriolis 
terms are centred in time. The Poisson equation for the stream function ( 2 . 1 3 ~ )  is 
formulated in its standard second-order-accurate finite-difference form by a high-speed 
Poisson solver that  employs cyclic reduction (see Buneman 1969). Equation (2.13d), 
i.e. the secondary-flow velocity-stream-function relations, are central-differenced. 
This finite-difference formulation, in its totality, constitutes a second-order-accurate 
conservative difference scheme which has no boundary-condition problems. I n  
addition to  being linearly stable, it is not subject to nonlinear instabilities that arise 
from aliasing errors, since all aliasing errors are bounded. 

The calculations were carried out in a rectangular channel with an aspect ratio 
HID = 8 which was discretized into a 16 x 128 grid. The physical properties chosen 
were that for water (at room temperature) flowing in a channel with a width 
D = 1.92 in. and height H = 15.36 in. (these dimensions correspond to  uniform grid 
lengths Ax, Ay = 0.01 ft). For this case, i t  should be noted that v = 1.1 x ft2/s 
and p = 1.936 slugs/ft3. At this point we will introduce the following dimensionless 
numbers : 

(2.15) 

which are respectively the Reynolds number, the rotation number and the Ekman 
number ( Wo is the integrated average axial velocity). These particular dimensionless 
numbers will be utilized for the comparisons with the experiments of Hart (1971) and 
Lezius & Johnston (1976). Since we were interested in examining the effect of a 
continuous increase in angular velocity for a fixed physical pressure gradient, there 
was no advantage to be gained by non-dimensionalizing the equations of motion a 
priori. 

Computations were conducted in the laminar regime for a variety of Reynolds 
numbers and rotation numbers, mostly in the ranges 

(2.16) 

for which a considerable amount of experimental data were available for comparisons. 
These calculations required from 30 min to  1 hour on a DEC System-10 computer, 
with the lower time amount corresponding to  the case where the secondary flow is 
weak. Since, from a localized linear stability analysis, we must have the time step 
At satisfy the constraint (cf. Roach 1972) 

0 < Re < 500, lo-* < Ro < 3, 

lulmax I l4max]-' A t <  2~ -+- +- [ (:x2 iy2) Ax Ay ' 
(2.17) 

the cases with a stronger secondary flow (i.e. with a faster rotation rate) require a 
larger number of iterations for convergence. 

In  $3  we will examine the numerical results obtained in complete detail. 

13-2 
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FIGURE 4 

FIauRE 3. Computer-generated fully developed secondary-flow streamlines in an 8 x 1 channel ; 
Re = 80.4, Ro = 2.9 x lo-* (a = 

FIGURE 4. Computer-generated secondary-flow streamlines in an 8 X 1 channel; Re = 107, Ro = 0.5 
(a = 0.023 rad/s, G = 8.6 x 

rad/s, G = 6 x lb/ft3). 

Ib/ft3): (a )  t = 1 a ;  ( b )  75 s ;  (c) fully developed. 

3. Numerical results and comparisons with experiments 
Initially we conducted computations for the weak-rotation case at various 

Reynolds numbers in the laminar regime. These results clearly demonstrated the 
existence of a double-vortex secondary-flow structure where each vortex, which has 
a lengthscale of the order of the width of the channel, is somewhat compressed against 
the wall of the channel to which it is adjacent. A computer-generated contour map 
of the fully developed secondary-flow streamlines for Re = 80.4 and Ro = 2.9 x 
(Q = rad/s) is shown in figure 3, which illustrates these effects and is in 
qualitative agreement with the calculations of Hart (1971). I n  all of the contour maps 
that will be shown, the uppermost vortex rotates in the clockwise direction while the 
vortices below counter-rotate. 
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8 

FIGURE 5 .  Computer-generated secondary-flow streamlines in an 8 x 1 channel ; Re = 248, 
Ro = 0.047 (a = 0.005 rad/s, G = 2 x lo-* Ib/ft3): (a) t = 10 s ;  (b) 500 s; (c) 1600 s ;  ( d )  fully 
developed. 

As the rotation rate is increased further, the secondary-flow vortices begin to 
stretch into the interior of the channel. An example of this phenomenon is shown in 
figure 4 for Re = 107 and Ro = 0.5. At this point, a small increase in the rotation rate 
leads to the onset of an instability in the form of longitudinal roll cells. It should be 
noted that it has only been proven rigorously that roll-cell solutions constitute an 
instability (i.e. a change to a higher-mode solution) for the case of rotating plane 
Poiseuille flow (see figure 2) .  This is easy to see, since for the case where HID+ 00, 

(2.13a-d) has the steady-state solution 

w = wc(z), u = 0, 21 = 0, 0 = 0 (3.1) 

(where we(.) is the classical parabolic velocity profile) for all values of Re and Ro. 
However, as shown in the linear stability analyses of Hart (1971) and Lezius & 
Johnston (1976), the unidirectional solution (3.1) becomes unstable in the presence 
of small disturbances when the Reynolds number exceeds a critical value for a certain 
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FIGURE 6. Axial-velocity profiles in an 8 x 1 channel; Re = 248, Ro = 0.047 (a = 0.005 radjs, 
G = 2 x lbjft3): (a) along the horizontal centreline of the channel; (6) along the vertical 
centreline of the channel. 
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il 
FIGURE 7. Experimental axial-velocity profiles along the vertical centreline of a rotating channel 
(Hart 1971): (a) SZ = 0,  ( b )  SZ > 0, with double-vortex secondary flow; (c, d )  SZ > 0, with roll cells; 
(e) SZ > 0, Taylor-Proudman regime. 

range of rotation numbers. For this domain, the observed flow consists of longitudinal 
roll cells superimposed on an axial velocity profile as shown in figure 2. Although it  
has not been rigorously proved, there is every reason to  believe that the onset of roll 
cells in a large- (but finite-) aspect-ratio channel also constitutes an instability. As 
we shall soon see, the results of this study support this belief. 

I n  figure 5 ,  computer-generated contour maps of the secondary-flow streamlines 
are shown at various times in the development of roll cells for Re = 248 and 
Ro = 0.047. It is clear that the fluid motion begins with a double-vortex secondary 
flow, which stretches into the interior of the channel and then splits eventually into 
six counter-rotating roll cells which are superimposed on a slightly stretched and 
asymmetric double-vortex secondary flow (see figure 5d) .  The number of roll cells that 
appear would, of course, depend on the aspect ratio of the channel. For an aspect 
ratio of eight, which was used for all the calculations conducted here, the maximum 
number of roll cells that appeared was six. I n  figure 6 ( a ) ,  the axial velocity profile 
along the horizontal centreline of the channel is plotted for Re = 248 and Ro = 0.047. 
The axial profile in the absence of rotations is shown with a dotted line. It is quite 
clear that  the presence of roll cells has a considerable distortional effect on this 
velocity profile by leading to a strong asymmetry (i.e. the maximum axial velocity 
is shifted toward the high-pressure side of the channel), with a substantial reduction 
in the flow rate. For this case, the ratio of the maximum vertical secondary flow to 
the maximum axial velocity, given by vu,/w,, is 0.042, and the ratio of the flow rate 
in a rotating channel to the flow rate in a stationary channel (with the same pressure 
gradient), given by Qr/Q, is0.924. It should be noted that the maximum axial velocity 
at the horizontal centreline of the channel is shifted toward the high-pressure side 
of the channel (i.e. the side farthest from the axis of rotation), since, as shown in figure 
5(d) ,  the roll cells transport momentum to this side. However, in a channel with a 
different aspect ratio, the maximum axial velocity may be shifted to the opposite 
side of the channel. For instance, in a channel with an aspect ratio that allows for 
the development of eight roll cells, momentum would be transported to the 
low-pressure side of the channel a t  its horizontal centreline, which is the opposite of 
the case presented here. 

The axial-velocity profile along the vertical centreline of the channel is shown in 
figure 6 ( b )  for Re = 248 and Ro = 0.047. While this profile is symmetric, it is 
nevertheless highly distorted by the presence of roll cells. More specifically, the 
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FIGURE 8. Computer-generated secondary-flow streamlines in an 8 x 1 channel ; Re = 485, 
Ro = 0.014 (Q = 0.003 rad/s, G = 4 x lb/ft3): (a )  t = 10 s; ( b )  400 s ;  ( c )  1000 s ;  ( d )  fully 
developed. 

axial-velocity profile has a distinct wavy structure which is in reasonable qualitative 
agreement with the experimental observations of Hart  (1971) (see figures 7c ,  d ) .  The 
development of roll cells for the case where Re = 485 and Ro = 0.014 is shown in figure 
8. Again, there is a double-vortex secondary flow early on, which stretches to the 
interior of the channel and then splits into three pairs of counter-rotating roll cells. 
However, here the separation distance between each pair of roll cells is greater than 
in the previous case. As we will see below, this is indicative of the fact that the flow 
is getting closer to the stability boundary. The axial velocity profiles along the 
horizontal and vertical centrelines of the channel are shown in figures 9(a,  b )  for 
Re = 485 and Ro = 0.014. As in the previous case, the maximum axial velocity along 
the horizontal centreline of the channel is shifted to the high-pressure side of the 
channel, and the axial-velocity profile along the vertical centreline of the channel has 
a wavy structure. Again, there is a discernible reduction in the flow rate which is of 
the order of 10 yo. 



Secondary flows and roll-cell instabilities in rotating channel $ow 

0.003 rad/s 
0 

= 0.024 

= 0.903 

= t  

387 

- = 0.024 'rn 

wrn 

8, = 0.903 
Q 

FIGURE 9. Axial-velocity profiles in an 8 x 1 channel; Re = 485, Ro = 0.014 (52 = 0.003 rad/s, 
G = 4 x Ib/ft3): ( a )  along the horizontal centreline of the channel; (b)  along the vertical 
centreline of the channel. 
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FIGURE 10. Computer-generated secondary-flow streamlines in an 8 x 1 channel; Re = 114, 
Ro = 0.514 (52 = 0.0251 rad/s, G = Ib/ft3): (a)  t = 10 s; (b) 1500 s ;  (e) fully developed. 

Substantial increases in the rotation rate lead to a restabilization of the flow to 
a Taylor-Proudman regime (i.e. the disappearance of the roll cells). This phenomenon 
is predicted by Rayleigh’s stability criterion, which states that a necessary condition 
for an instability is that the square of the absolute circulation about the axis of 
rotation decreases with an increase in the radial distance. Obviously, if the channel 
is rotated fast enough, the absolute circulation will be dominated by the rotation, 
which will cause the circulation to increase with an increase in the radial distance. 
Consequently the flow will become stable. Of course, in the presence of viscosity, this 
restabilization will occur a t  lower angular velocities than those predicted by 
Rayleigh’s criterion. 

Computer-generated contour maps of the streamlines are shown in figure 10 at 
various times for Re = 114 and Ro = 0.514 (52 = 0.0251 rad/s). It is clear from this 
figure that the roll cells are starting to weaken. An additional increase in the rotation 
rate to 52 = 0.08 rad/s (while maintaining the same pressure gradient G )  yields a fully 
restabilized flow where Re = 107 and Ro = 1.75. The time evolution of the secondary- 
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FIGURE 11 .  Computer-generated secondary-flow streamlines in an 8 x 1 channel; Re = 107, 
Ro = 1.75 (52 = 0.08 rad/s, G = lb/ft3): (a )  t = 1 s ;  (a) 30 s; (c) 50 s ;  ( d )  fully developed. 

flow streamlines of this restabilized flow is shown in figure 1 I .  The fully developed 
secondary flow consists of a stretched double-vortex configuration similar to  that 
shown in figure 4 where each vortex is strongly compressed against the horizontal 
wall of the channel to which i t  is adjacent (see figure l l d ) .  In  figure 12(a) the 
axial-velocity profile along the horizontal centreline of the channel for this case is 
shown. It is quite clear that  the secondary flow leads to  a distortion of this profile, 
with a substantial reduction in flow. More specifically, the axial velocity along the 
horizontal centreline of the channel is asymmetric, with its maximum velocity shifted 
toward the low-pressure side of the channel. This results from the fact that the 
secondary flow near the horizontal centreline of the channel transports momentum 
toward the low-pressure side of the channel (see figure 11 d ) .  The axial-velocity profile 
along the vertical centreline of the channel is shown in figure 12(b). It assumes a 
Taylor-Proudman configuration (i.e. does not vary along the axis of rotation) in the 
interior of the channel, with the exception of two peaks which are located near the 
upper and lower walls of the channel. These result from the fact that, a t  more rapid 
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FIGURE 12. Axial-velocity profiles in an 8 x 1 channel; Re = 107, Ro = 1.75 (a = 0.08 radfs, 
G = lb/ft3): (a )  along the horizontal centreline of the channel; ( b )  along the vertical centreline 
of the channel. 
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FIQURE 13. Computer-generated secondary-flow streamlines in an 8 x  1 channel; Re = 171, 
Ro = 2.73 (Q = 0.2 rad/s, G = 2 x loT4 Ib/ft3): (a )  t = 1 S; ( b )  25 s ;  (c) 50 s ;  (d )  fully developed. 

rotation rates, the secondary flow can be thought of as originating from Ekman 
suction, as discussed in Hart (1971). The numerical results shown in figure 12(b) are 
thus in good qualitative agreement with the experimental observations of Hart (1971) 
shown in figure 7 ( e ) .  Another set of calculations in the Taylor-Proudman regime are 
shown in figures 13 and 14 for Re = 171 and Ro = 2.73 (Q = 0.2 rad/s). This 
restabilized flow corresponds to the same pressure gradient as the unstable flow shown 
in figure 5 ,  and is obtained by simply increasing the angular velocity from 
Q = 0.005 rad/s to Q = 0.2 rad/s. The fully developed secondary flow again consists 
of a stretched double-vortex configuration (see figure 13d), and the axial-velocity 
profile along the horizontal centreline of the channel is asymmetric, with its 
maximum velocity shifted toward the low-pressure side of the channel as shown in 
figure 14(a) (there is also a substantial reduction in the flow rate). The axial-velocity 
profile along the vertical centreline of the channel for this case (see figure 14b) assumes 
a Taylor-Proudman configuration in the interior of the channel, with two peaks 
located at the upper and lower walls of the channel which arise from Ekman suction 
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FIGURE 14. Axial-velocity profiles in an 8 x 1 channel; Re = 171, Ro = 2.73 (Q = 0.2 rad/s, 
G = 2 x Ib/ft3): (a )  along the horizontal centreline of the channel; ( b )  along the vertical 
centreline of the channel. 
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FIGURE 15. Numerically obtained stability-boundary points for the onset of 
roll-cell instabilities in rotating channel flow. 

as discussed previously. This velocity profile is in excellent qualitative agreement with 
the experimental observations of Hart  shown in figure 7 ( e ) .  

The location of the overshoot peaks in figures 12 ( b )  and 14 ( b )  occur respectively 
a t  distances of y / H  = 0.0235 and y / H  = 0.0156 from the top and bottom walls of 
the channel. These results are in the range of values y / H  = 0.0130 and y / H  = 0.00819 
which are obtained from the linear theory of the Ekman layer using the equation (see 

D Hart 1971) 

H H 

The difference in these results can be attributed to the fact that  the Rossby numbers 
(i.e. &Ro-’) for these flows are not extremely small. The Rossby numbers for the results 
shown in figures 12(b) and 14(b) are respectively 0.285 and 0.183. I n  order for (3.2) 
to be valid, the Rossby number must be much less than unity. Consequently the 
nonlinear convective terms cannot be entirely neglected in our case as is done in the 
linear Ekman-layer theory. On physical grounds we would expect the convective 
terms to transport momentum away from the channel walls, thus leading to the 
movement of the overshoot peaks to  a distance further from the walls, which is in 
qualitative agreement with these computations. 

The numerically obtained stability boundary points are plotted in figure 15 
alongside the theoretical results of Hart (1971) and Lezius & Johnston (1976), which 
were obtained from a linear stability analysis. These results tend to  be in excellent 
agreement with those of Hart  near the critical point, whereas away from the critical 
point they are in excellent agreement with the results of Lezius & Johnston. I n  
particular, we obtained a critical point with the values Re,  = 110 and Roc = 0.5,  
which are somewhat higher than the values of Re,  = 88.53 and Ro,  = 0.5 obtained 
by Lezius & Johnston. However, i t  should be noted that since our calculations are 
for a finite-aspect-ratio channel (unlike those of Hart and Lezius & Johnston, which 
deal with Poiseuille flow) higher stability limits would be expected on physical 
grounds. More specifically, the presence of the upper and lower walls of channel tend 
to have a stabilizing effect on the flow. Hence we feel that  the results shown in figure 

(3.2) 
- =  Y 2 @ - .  
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15 are quite encouraging and strongly support the accuracy of the results obtained 
here. It should be noted a t  this point that  the criterion used to determine the stability 
boundary points in figure 15 was the appearance of any subsidiary vortices in the 
interior of the channel under steady-state conditions (see e.g. figure 10c). 

Finally, we would like to make a few comments concerning the role of the nonlinear 
convective terms in the numerical results presented in this paper. As demonstrated 
in Speziale (1982), asymmetries in the secondary-flow and axial-velocity profiles have 
their origin in the convective terms. Consequently, when strong asymmetries occur 
(cf. figures 9a, 10c), the convective terms are playing a dominant role. Therefore, in 
order to  understand such effects, the full nonlinear equations of motion must be 
solved, as has been done here. 

4. Summary and conclusion 
A detailed numerical study has been conducted of secondary flows and roll-cell 

instabilities in laminar pressure-driven channel flow subjected to a spanwise rotation. 
The full nonlinear time-dependent Navier-Stokes equations were solved by a 
finite-difference method in this study, which, we believe, gives a more complete 
picture of the physical mechanisms that are manifested in rotating channel flow. At 
weak rotation rates, a double-vortex secondary flow occurs, consistent with previous 
studies. More precisely, this secondary flow consists of two counter-rotating vortices, 
which have a lengthscale of the order of the width of the channel and are somewhat 
compressed against the upper and lower walls of channel. Of course, this secondary 
flow has a negligible effect on the axial-velocity profiles at the centerlines of the 
channel. As the rotation rate is increased for a given axial pressure gradient, this 
double-vortex secondary flow begins to stretch far into the interior of the channel, 
where i t  can have a discernible distortional effect on the axial velocity, with an 
associated reduction in the flow rate. For Re > 110 and 0 < Ro < 3, an instability 
occurs in the form of longitudinal roll cells. The numerically obtained critical point 
of Re, = 110 and Roc = 0.5 (as well as the other stability boundary points) for the 
onset of roll cells is within the range of values obtained by Hart  (1971) and Lezius 
& Johnston (1976) by a linear stability analysis. The presence of roll cells were shown 
to have a severe distortional effect on the axial-velocity profiles. To be specific, the 
axial-velocity profiles along the horizontal centreline of the channel are asymmetric, 
with the maximum velocity shifted toward the high-pressure side of the channel, and 
the axial velocity along the vertical centreline of the channel had a wavy structure, 
in qualitative agreement with the experimental observations of Hart  (1971). There is 
also a discernible reduction in flow rate for a given axial pressure grd ien t  as a result 
of the presence of roll cells and secondary flows. 

At more rapid rotation rates, the flow restabilizes to a Taylor-Proudman regime. 
Here the roll cells disappear and a stretched double-vortex secondary flow appears 
which is quite similar to  that which occurs prior to  the onset of instability. In  the 
Taylor-Proudman regime there is a considerable distortion of the axial-velocity 
profiles, with a substantial reduction in the flow rate (for one set of calculations it 
was of the order of 40 yo). The axial-velocity profiles along the horizontal centreline 
of the channel are asymmetric, with the maximum velocity shifted toward the 
low-pressure side of the channel, whereas the axial-velocity profile along the vertical 
centreline of the channel assumes a Taylor-Proudman configuration in the interior 
of the channel. Peaks in the axial velocity, which arise from Ekman suction, occur 
a t  the upper and lower walls of the channel, in agreement with the experimental 
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observations of Hart (1971). To the best of our knowledge, the calculations presented 
here represent the first fully nonlinear calculations of roll-cell instabilities and the 
first complete calculations of the Taylor-Proudman regime in rotating channel flow. 

More research is needed to clarify fully the nature of roll-cell instabilities in rotating 
channel flow. As alluded to earlier, i t  is most likely that roll-cell solutions exist in 
parallel with the double-vortex secondary-flow solution for all Re and R o  in a 
finite-aspect-ratio channel (the double-vortcx solution becomes unstable for certain 
values of Re and Ro) .  Nevertheless, this should be proven rigorously. Such a proof, 
which would be difficult because of the three-dimensional structure of the flow, is 
simply beyond the scope of the present paper. Future research is also needed in the 
theoretical analysis of turbulent rotating channel flow, which can have important 
technological applications in the design of turbomachinery. Most of the previous work 
in this area has tended to be semi-empirical (cf. Majumdar, Pratap & Spalding 1977; 
Howard, Patankar & Bordynuik 1980) because of the considerable complexity of the 
flow. In  conclusion, there is a wealth of diverse and interesting pkysical phenomena 
that occur in rotating channel flow, which, as a result of the research effort of the 
past decade, are beginning to be better understood. 
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